
Theor Chem Account (2008) 119:421–427
DOI 10.1007/s00214-007-0397-0

REGULAR ARTICLE

Harmonic averaging of smooth permittivity functions
in finite-difference Poisson–Boltzmann Electrostatics

Stephen T. Kottmann

Received: 11 September 2007 / Accepted: 29 October 2007 / Published online: 27 November 2007
© Springer-Verlag 2007

Abstract Finite-difference Poisson–Boltzmann calculati-
ons offer an efficient and accurate means for electrostatic
characterization of solvated molecules. However, discretiza-
tion of charge and permittivity results in sensitive depen-
dence on molecular position and orientation relative to the
finite-difference grid. In this article, an improved method
for limiting the error associated with discretization of the
molecular volume, combining harmonic averaging between
grid vertices and Gaussian-based smooth permittivity func-
tions, is presented. While both these methods have the broa-
der result of a smoothly varying permittivity, the Gaussian
model represents a fundamental description of the dielec-
tric boundary while harmonic averaging serves to provide
information about the permittivity between grid points. Grid
positional error is reduced by an order of magnitude in cal-
culations of Born ion solvation energies, small molecule and
protein solvation energies, and the solvation energy contri-
bution to a protein-inhibitor complex.

Keywords Poisson–Boltzmann · Finite-difference ·
Grid-independence

1 Introduction

Implicit solvent models have become a valuable resource
in the characterization of biochemical and macromolecule
systems [1,2]. While explicit inclusion of solvent molecules
is ostensibly the most accurate method, implicit solvent
models have proven to reproduce the effects of the
solvent environment in many systems while increasing
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computational efficiency [3–8]. Addition of explicit water
molecules to a typical biomolecular system can increase the
total number of atoms by an order of magnitude. Implicit
solvent models replace the numerous solvent molecules with
a continuum dielectric and seek to capture the average effects
of the solution environment at the cost of detail in solute–
solvent interactions.

The Poisson–Boltzmann equation (PBe) provides a robust
and accurate method for calculating continuum electrostatic
energies of molecules in solution environments and is often
used as the standard to measure the viability of other implicit
solvent models [9–11]:

∇· (ε(r)∇φ(r)) − κ2(r) sinh

[
eφ(r)

kT

]
= −4πρ(r) (1)

where ε(r) is the permittivity defined by a low dielectric
molecular cavity embedded in a high dielectric continuum,
φ(r) is the electrostatic potential,ρ(r) is the molecular charge
distribution, e is the elementary charge, k the Boltzmann
constant, T the absolute temperature, and κ = κ

√
ε is a

dielectric independent Debye–Huckel parameter. Equation 1
represents the “full”, or non-linear, form of the Poisson–
Boltzmann equation and is often linearized by the assumption
that the potential, φ, is small in the ion accessible region.

In this model, the molecular system is discretized onto a
set of vertices spanning the volume of the molecule and a sur-
rounding solvent volume. The electrostatic potential can then
be calculated by a variety of methods, including boundary-
value finite-difference (FD) techniques [12,13]. Once the
electrostatic potential is known, the electrostatic free energy
of a set of discrete charges is obtained from,

Gelec = 1

2

∑
i

qiφ(ri) (2)
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for the linearized PBe, where qi are the atomic charges
located at positions ri. Traditionally, the solvation energy is
obtained by computing the difference in electrostatic energy
between a calculation with an inhomogeneous dielectric defi-
ned by a low dielectric molecular cavity embedded in a high
dielectric medium, and a reference calculation with uniform
dielectric [3]. However, it is also possible to calculate the sol-
vation energy using a single calculation by first computing
the induced polarization charges at the dielectric boundary
followed by calculation of the Coulombic interaction bet-
ween the solute charges and the polarization charges [14].
Although this method eliminates the necessity of a second
PBe solution, the conventional reference calculation method
is utilized in this work in order to maintain consistency as
the definition of the dielectric boundary is changed.

Recently there has been a focus on incorporation of
Poisson–Boltzmann electrostatics in molecular dynamics
(MD) and Monte Carlo (MC) simulations [5,15–17]. These
simulations derive particular benefit from the reduction in
degrees of freedom offered by implicit solvent models.
However, these applications require the repeated calculation
of solvation energies (often millions of times) and represent a
demanding implementation of the Poisson–Boltzmann equa-
tion. Such applications also call for the direct comparison of
molecular solvation energies following translational, rotatio-
nal, and conformational changes. However, one of the more
challenging aspects of implementing the PBe model is sta-
bilization of the energy calculation with respect to the mole-
cular position and orientation on the FD grid [18–22]. The
calculated electrostatic potential has significant dependence
on the discretized maps of both the charge and dielectric, thus
complicating such comparisons.

Charge discretization methods based on uniform charge
distribution [18], antialiasing [19], and inverse quadratic
interpolation [20] have been shown to significantly reduce the
dependence of electrostatic calculations on the discretized
map in comparison to the traditional point charge representa-
tion. Also, several methods have been proposed to smoothen
the abrupt change in dielectric at the molecular surface in
order to reduce positional error. This can be achieved by ave-
raging of local dielectric values [19,21] or by the introduction
of smoothly varying dielectric functions [20,22]. Naturally,
molecular position and orientation error can also be decrea-
sed by reducing the grid spacing at the cost of greater com-
putational demand. However, limiting this error to a level
appropriate within the framework of a molecular mechanics
simulation of even a moderately sized peptide can require
grid dimensions beyond the range of acceptable computatio-
nal efficiency.

In this article, a method combining Gaussian-based per-
mittivity functions and harmonic averaging over FD grid
lines is shown to reduce the positional error associated with
the discretization of the molecular surface. A distinction

should be made between a smooth dielectric model, such
as the atom-centered Gaussian functions discussed below,
and smoothing methods such as harmonic averaging. The
smooth dielectric model addresses the physical reality of a
discontinuity in the permittivity. However, harmonic avera-
ging between grid vertices merely has the effect of smoothing
the discretized dielectric boundary. By including more detai-
led information about the dielectric between two grid ver-
tices, the position of the molecular surface is more precisely
defined. Thus, we can combine the two methods, utilizing a
physically reasonable smooth permittivity model while bene-
fitting from increased knowledge of the permittivity between
grid points. Ultimately, this results in the abilty to obtain
acceptably small discretization error from larger grid scales.
Computational costs of cubic grid-based methods typically
scale proportionally to the cube of the grid size. Therefore
the ability to utilize larger grid scales represents a significant
and straightforward method to reduce computational time
and memory demands, enabling larger and longer simula-
tions of solvated biomolecules.

2 Methods

The grid constructed for finite-difference Poisson–
Boltzmann calculations consists of a rectangular array of
vertices, upon which the appropriate values for the charge,
dielectric constant, and ionic strength must be assigned.
These vertices effectively subdivide the space in and around
the molecular volume into cubes centered around each ver-
tex. Atomic charges are mapped by considering a constant
charge density over the cube, while values for the dielec-
tric are assigned to each face of the cube. These dielectric
values are shared by neighboring cubes and mark the mid-
points of grid lines connecting the grid vertices. Traditionally,
points within the molecular interior are assigned a dielectric
constant of εsolute (typically 1–4) while points in the solvent
region are assigned a value of εsolvent (≈78 for water), leading
to a discontinuous step at the molecular surface.

As atoms move relative to the FD grid and vertices pass
through the molecular surface, the abrupt change in dielectric
causes significant fluctuations in the calculated electrostatic
energies. Davis and McCammon [21] showed that the errors
associated with the precipitous change in dielectric could be
alleviated by harmonically averaging the permittivity over
the grid line connecting two vertices, rather than solely taking
the value at the midpoint. This conclusion was inspired by
matching finite-difference theory to the analytical solution
for a parallel plate capacitor. The result can also be obtained
by the subdivision of a single grid line followed by appli-
cation of one-dimensional finite-difference approximations
and elimination of variables.
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This averaging technique can be interpreted as an increase
in the precision with which the location of the dielectric boun-
dary is defined as more detailed information about the per-
mittivity function has been included. The traditional, binary
representation provides no further information than between
which two grid points the molecular surface lies. By avera-
ging along the grid line, we gain more precise information of
where the boundary falls between the two grid points. This
also produces the effect of a smoothly varying dielectric at
the molecular surface, resulting in improved computational
stability and convergence, although the fundamental model
of the molecular surface is unchanged.

Alternatively, Grant et al. [20] proposed a smoothly
varying dielectric function inspired by the physical necessity
for continuously variable macroscopic properties and their
previous success in describing molecular volumes by atomic
Gaussians [23]. In this model, the dielectric is determined as

ε(r) = εsolute + (εsolvent − εsolute) e−Aρsum(r) (3)

ρsum(r) =
∑

i

pAe−κr2
i /σ 2

i (4)

where the sum is carried out over the atoms of the molecule, ri

and σi are the distance from and radius of atom i , respectively,
and pA, κ , and A are dimensionless adjustable parameters.
The Gaussian model imparts several benefits. Besides offe-
ring an arguably more physically realistic basis, the atomic
Gaussian molecular volume provides a simpler construction
than the molecular surface. Differentiability with respect to
atomic position allows for the direct calculation of solvent
forces and subsequent incorporation into molecular dyna-
mics simulations. Also, similar to the averaging technique,
this smoothly varying permittivity function provides compu-
tational stability and improved convergence.

Although both these methods have the broader result of
a smoothly varying permittivity, it is important to mark the
distinction between the atom-centered Gaussian function as
a fundamental model of the solute–solvent boundary and har-
monic averaging as a technique to obtain more detailed infor-
mation of the discretized molecular surface at a given grid
scale. Here we seek to combine the benefits of each method
by applying the harmonic averaging technique of Davis and
McCammon to the atom-centered Gaussian-based permitti-
vity functions. To this end, the Gaussian volume function is
first evaluated at adjacent grid points i and i + 1 by Eq. 4 to
give ρi and ρi+1, respectively. With a continuous definition
of the permittivity, the harmonic average is replaced by the
analagous integral equation, written as

ε(r) = (ρi+1 − ρi )∫ ρi+1
ρi

dρ[εsolute + (εsolvent − εsolute) exp(−Aρ)]−1

= εsolute(ρi+1 − ρi )

(ρi+1 − ρi ) − A−1 ln(εi+1/εi )
(5)

where εi and εi+1 are the dielectric evaluated by Eq. 3 at
the grid vertices. This method retains the benefits of the phy-
sically appealing smooth permittivity function, while also
capitalizing on the the increased positional stability of the
harmonic averaging technique.

In all calculations, solvation energies were calculated with
solute and solvent dielectric constants of 1 and 80, respec-
tively. Charges were mapped to the FD grid following the
inverse quadratic interpolation proposed by Grant et al. [20].
The finite-difference Poissson–Boltzmann equation was sol-
ved numerically by red-black Gauss–Seidel iterations, with
convergence assumed when the calculated electrostatic
energy changed by less than 1×10−6 kcal/mol. Solvation
energies were calculated by taking the difference from a uni-
form dielectric reference calculation. Ionic strength was set to
zero in all calculations, and boundary values were set accor-
ding to the Coulombic potential.

3 Results and discussion

Born ion, small molecule, and protein solvation energy calcu-
lations are often used to demonstrate the efficacy of implicit
solvent models at various system sizes [18–21]. The Born
ion provides a simple, clear testing ground as the solvation
energy of a single ion with charge q and radius σ is available
analytically for comparison as

GBorn = q2

8πε0σ

(
1

εsolvent
− 1

εsolute

)
(6)

In order to illustrate practical application of this method, sol-
vation energy calculations were also performed on a set of
small molecules and proteins from the Protein Data Bank
(http://www.rcsb.org/pdb). Finally, the solvation contribu-
tion to the binding energy of the thrombin–NAPAP complex
is used to demonstrate application to computational binding
simulations. In order to assess positional error, the solvation
energy of each ion or small molecule was calculated at 100
random positions relative to the FD grid. Protein solvation
energies were calculated at 20 random positions relative to
the FD grid. The standard deviation and range, defined as
the difference between the maximum and minimum values,
of calculated solvation energies were used to evaluate the
positional stability of four dielectric models: the traditio-
nal discontinuous molecular surface (MS), the harmonically
averaged molecular surface (MS-HA), the Gaussian-based
permittivity (GAUSS), and our harmonically averaged-
Gaussian-based permittivity method (GAUSS-HA).

The solvation energy of a single ion with radius σ = 2 Å
and unit charge q = 1 was evaluated at 100 grid positions for
grid spacings in the range of 0.1–1.0 Å. Figure 1a illustrates
the average error in the Born ion solvation energy calculation
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Fig. 1 Calculation of Born ion solvation energies as a function of grid
spacing for each of the four dielectric models: (open square) Traditio-
nal molecular surface, (filled square) Harmonically averaged molecular
surface, (open circle) Gaussian atomic volume function, and (closed
circle) Harmonically averaged Gaussian atomic volume function. a Ion
solvation energy. Each point represents the average solvation energy
calculated at 100 random positions relative to the finite-difference
grid. The horizontal line at −81.95 kcal/mol represents the theoretical
solvation energy of a 2 Å Born ion in water (εsolv=78), while the hori-
zontal line at −88.47 kcal/mol represents the fine grid solvation energy
for the Gaussian model and serves as a guide to the eye. b Standard
deviation of the calculated solvation energies. c Energy spread is the
difference between the maximum and minimum calculated solvation
energies. Note that b and c are on a logarithmic scale

over the range of grid scales. Solvation energies are known
to be highly sensitive to the description of the molecular
surface and therefore force-fields are often re-parameterized
for optimum accuracy [10,24,25]. This is not a surprising
result considering that solvation energy in the continuum
representation is equated with the build-up of induced pola-
rization charge at the dielectric interface. Smooth permit-
tivity models represent the region of induced polarization
charge as a three-dimensional volume, whereas in the dis-
crete molecular surface model polarization charges exist only
on a two-dimensional surface. This difference in the defi-
nition of the dielectric boundary and position of induced
charges will considerably alter the solvation energy. It is
apparent that this is the case with the Gaussian-based models,
as both converge at fine grid scale to a solvation energy of
Gsolv = −88.47 kcal/mol rather than the analytical value
of GBorn = −81.95 kcal/mol. Optimal re-parameterization
of atomic radii is also specific to the charge parameters of
the force-field in use and must be considered for each
application. In the current work we do not consider such a
re-parameterization, but refer the reader to Swanson et al.
[24,25], who have demonstrated both the rescaling of current
force-field parameters as well as successful optimization of
new parameter sets for smooth permittivity functions. In the
absence of this re-parameterization, focus should instead

be placed on the error relative to the fine grid value for
the Gaussian-based models. The increased accuracy achie-
ved through harmonic averaging is very apparent in the MS
models, and can also be seen in the Gaussian-based models at
larger grid scales. The stabilizing benefits of harmonic ave-
raging are illustrated in Fig 1b, c by examining the standard
deviation and range of solvation energies, respectively, for the
100 repeated calculations at each grid scale. For a desired sta-
bility characterized by a standard deviation of 10−2 kcal/mol,
the MS-HA model requires a grid scale of 0.2 Å, the GAUSS
model requires a grid scale of slightly less than 0.4 Å, while
the GAUSS-HA model achieves this level of stability at a grid
scale of 0.6 Å, with an absolute error of less than 0.3 kcal/mol.

The second test of combining Gaussian-based permitti-
vity functions and harmonic averaging was the calculation
of molecular solvation energies. A set of eight small mole-
cules and four proteins were used to test the accuracy and
stability of the three reference dielectric models and our new
combined method. Atom charge and radius parameters were
taken from the optimized parameters for liquid simulations
[27] (OPLS), with the exception of charged hydrogens whose
radius was set as 0.8 Å rather than 0.0, as such a radius is
inappropriate for a molecular volume-based solvation energy
calculation. Interior and exterior dielectric constants were set
to 1 and 80, respectively, as consistent with the OPLS force
field. Table 1 shows the solvation energy, standard devia-
tion, and range of energies for each molecule calculated at
a relatively large grid spacing of 1 Å. Solvation energies are
similar between all methods, although it is again apparent,
particularly for the protein energies, that the Gaussian models
should be re-parameterized for optimal agreement with the
molecular surface models.

Perhaps the most straightforward approach to accelera-
ting Poisson–Boltzmann calculations is the increase of grid
scale. We have chosen here a large grid scale to emphasize the
stability imparted by the combination of a smooth dielectric
model and the averaging technique. Accurate work normally
requires a grid scale of 0.5 Å or less. Even at a large grid scale,
the GAUSS-HA model produces standard deviations in small
molecule solvation energies of less than 0.35 kcal/mol. Also,
the range of calculated energies, defined as the difference
between the maximum and minimum values, for each of the
small molecules is comparable to the thermal energy, kBT; an
important comparison when considering Monte Carlo simu-
lations, for example. Protein calculations are similarly sta-
bilized, exemplified by the relative standard deviation of a
ferrodoxin protein (PDB# 2FDN) solvation energy, which is
limited to 0.03%.

For application of the GAUSS-HA model to molecular
dynamics simulations, it must be verified that solvation forces
are also stabilized with respect to molecular position on the
finite-difference grid at large grid scales. Figure 2 illustrates
the accuracy and stability of atomic solvation forces for each
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Table 1 Grid stability in solvation energy calculations (Solvation
energies for each small molecule were calculated at 100 random posi-
tions relative to the finite-difference grid, while each protein was sam-
pled at 20 random positions. All energies are reported in kcal/mol and
given as the mean ± the standard deviation. Atomic parameters were
taken from the optimized parameters for liquid simulations (OPLS)
[27], except for charged hydrogens which have a radius of zero in the

OPLS force field. Such a radius is inappropriate for Poisson electrostatic
calculations, and therefore has been reset to 0.8 Å. A grid spacing of
1.0 Å and relative dielectric constants of 1 and 80 were used for the inter-
ior and exterior values, respectively, for all calculations. The range is
the difference between the maximum and minimum calculated solvation
energies. C7eq-Ala, C5-Ala, and αR-Ala represent different conforma-
tions of the alanine dipeptide, as described elsewhere [28]

MS MS-HA Gauss Gauss-HA

Molecule Esolv Range Esolv Range Esolv Range Esolv Range

Methanol −10.26 ± 1.52 8.49 −8.70 ± 0.55 1.94 −8.47 ± 0.60 2.24 −7.15 ± 0.17 0.66

Ethanol −9.86 ± 1.46 5.79 −8.37 ± 0.30 1.43 −7.89 ± 0.48 1.75 −6.49 ± 0.12 0.59

2-Propanol −9.80 ± 1.63 5.96 −8.25 ± 0.29 1.48 −7.78 ± 0.62 2.68 −6.32 ± 0.15 0.65

Acetone −6.08 ± 0.90 4.16 −5.29 ± 0.11 0.55 −4.94 ± 0.37 1.64 −4.33 ± 0.06 0.23

Methyl acetate −5.41 ± 0.79 3.44 −4.52 ± 0.18 0.78 −4.18 ± 0.29 1.35 −3.53 ± 0.12 0.43

Acetic acid −96.75 ± 6.57 23.91 −90.77 ± 0.66 3.26 −90.54 ± 3.05 12.24 −85.09 ± 0.34 1.31

Acetamide −15.25 ± 1.18 5.59 −13.02 ± 0.32 1.51 −12.96 ± 0.53 2.41 −10.86 ± 0.17 0.64

C7eq -Ala −20.84 ± 1.84 7.82 −17.82 ± 0.39 1.87 −16.83 ± 0.71 3.11 −14.07 ± 0.16 0.67

C5-Ala −23.74 ± 1.93 7.24 −20.72 ± 0.31 1.15 −19.44 ± 0.84 3.54 −16.95 ± 0.22 0.81

αR-Ala −24.50 ± 1.57 6.21 −21.76 ± 0.37 1.95 −20.62 ± 0.70 2.93 −18.22 ± 0.13 0.48

1GQV −3587.89 ± 23.89 98.97 −3273.01 ± 9.27 48.92 −2837.55 ± 6.59 27.71 −2550.87 ± 1.60 6.33

1HJE −160.34 ± 4.95 22.69 −140.02 ± 1.91 8.85 −119.00 ± 1.96 9.02 −103.01 ± 0.41 1.81

1KCH −651.35 ± 9.71 46.10 −567.69 ± 4.47 19.92 −432.16 ± 1.74 7.91 −364.98 ± 0.59 2.43

2FDN −6641.30 ± 24.39 99.88 −6497.97 ± 4.93 23.10 −6367.31 ± 8.78 36.00 −6238.17 ± 1.84 7.25

model, comparing the forces calculated at a grid scale of
1.0 Å to those calculated at a grid scale of 0.1 Å. Forces were
calculated at 25 random molecular positions relative to the
finite difference grid for a subset of atoms from the test struc-
tures listed in Table 1. Forces in the harmonically averaged
models show improved accuracy, while the harmonically ave-
raged Gaussian model demonstrates significantly improved
stability in the standard deviation of the calculated forces.
The coarse grid relative standard deviation is reduced on
average by a factor of two by application of harmonic ave-
raging, from 146.01% for MS to 75.25% for MS-HA, and
from 24.49% for GAUSS to 11.60% for GAUSS-HA.

Finally, the GAUSS-HA model is demonstrated in
comparison to the other three models in calculating the solva-
tion contribution to the binding energy of the bovine
thrombin-NAPAP (Nα-(2-naphthyl-sulphonyl-glycyl)-d-p-
amidino-phenylalanyl-piperidine) complex [26]. The input
structures were prepared from the Protein Data Bank file
(1ets) by removing waters and ensuring neutrality of the
thrombin protein. This coagulation protein–inhibitor com-
plex consists of 2,652 atoms, and was chosen as represen-
tative of general protein–ligand binding experiments. Atom
and radius parameters were again taken from the OPLS force
field, with interior and exterior dielctric constants of 1 and
80. Solvation energy calculations were carried out at 20
random positions relative to the finite difference grid. The

contribution to binding energy was calculated as the diffe-
rence in mean solvation energies between the complex and
its component parts, and standard deviations were combi-
ned to yield the standard deviation of the binding energy.
Figure 3 shows the difference in solvation energies over a
range of grid spacings from 0.3 to 1.4 Å for each dielectric
model. Once again, it is evident that the absolute energy cal-
culated with the Gaussian model differs from the molecular
surface model when using the same atomic parameters, and
comparison should be made to the energies calculated at fine
grid spacing. The GAUSS model alone offers similar accu-
racy and stability at large grid scales to the MS-HA model.
Application of the averaging technique to the Gaussian-based
permittivity functions further stabilizes the calculation, redu-
cing the standard deviation of calculated binding energies by
a factor of 3–5 and absolute errors by a factor of 2–3 over the
range of grid scales.

Harmonic averaging in the MS-HA model adds a signi-
ficant computational cost to the grid initialization routine.
For the thrombin–NAPAP complex on a 1.0 Å grid, the ini-
tialization CPU time for the MS model was 2.1 s on a single
2.4-GHz Intel Xeon processor. Ten point subdivision of mole-
cular surface-spanning grid lines and harmonic averaging
increased the initialization time to 14 s. However, in the case
of the Gaussian model, there was no increase in initialization
time. Initialization for the GAUSS model involves evaluation
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Fig. 2 Solvation forces for a subset of atoms from the test structures
listed in Table 1 comparing coarse grid scale calculations (1.0 Å) to
forces calculated at a fine grid scale (0.1 Å). Data points represent the
average force for each atom calculated at 25 random molecular positions

relative to the finite-difference grid, with standard deviations represen-
ted by error bars, and the line (y = x) as a guide for the eye. a MS
model, b MS-HA model, c GAUSS model, and d GAUSS-HA model

of the Gaussian volume and dielectric, Eqs. 3 and 4, at the
midpoint of each grid line. However, Eq. 5 includes the
Gaussian volume and dielectric at the grid vertices only, and
explicit subdivision of grid lines is not necessary. Therefore,
the minimal computational cost of evaluating the harmonic
average by Eq. 5 is recovered by evaluating the Gaussian den-
sity and dielectric at the grid vertices only, rather than at the
midpoints of each grid line. Initialization times were 2.2 and
2.1 s for the GAUSS and our GAUSS-HA models, respecti-
vely. It has been demonstrated by Fogolari et al. [16], among
others that solvation forces need not be updated at each time
step in molecular dynamics applications. Following argu-
ments based on the orientational dielectric relaxation time
of water (≈10 ps) and the average lifetime of a hydrogen
bond in bulk water (≈4 ps), a molecular dynamics protocol
was developed in which Poisson–Boltzmann solvation forces
were updated at an interval of 1 ps and combined by weighted
average with previous PB forces in order to smooth fluctua-
tions. Native protein structures were preserved over a 1 ns tra-
jectory through this periodically updating scheme. Because
it is not necessary to evaluate solvation forces at each time
step, PB computation times on the order of a few seconds

should not be seen as prohibitive in the application to MD
simulations.

4 Conclusions

The Poisson–Boltzmann model provides an efficient alterna-
tive to explicit inclusion of solvent in simulations of biomo-
lecules. However, calculated solvation energies have high
sensitivity to the discretization of charge and permittivity
functions in finite-difference calculations. For applications
such as molecular mechanics simulations, where direct com-
parison of energies following translational, rotational, and
conformational changes are required, this sensitivity necessi-
tates fine grid scales for accurate, stable, and grid independent
energy calculations. This work shows that application of har-
monic averaging to Gaussian-based permittivity functions
significantly reduces the positional error associated with the
discretization of the molecular surface, allowing the range
of acceptable accuracy and stability to be extended to lar-
ger grid-scales. This represents a straightforward and signi-
ficant increase in computational efficiency, as computational
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Fig. 3 Solvation energy contribution to bovine thrombin–NAPAP [26]
binding energy. Each point represents the difference in solvation energy
between the complex and its individual components, each averaged over
20 random positions relative to the finite-difference grid. Error bars
represent the standard deviation. From top to bottom, MS the traditio-
nal molecular surface model, MS-HA harmonically averaged molecular
surface, GAUSS Atomic Gaussian volume descriptors, GAUSS-HA har-
monically averaged atomic Gaussian volume descriptors

resources for cubic grid-based methods typically scale pro-
portionally to the cube of the grid size.

Acknowledgements We thank Angela M. Belcher, Peter J. Rossky,
and Ahmad S. Khalil for helpful discussions. Financial support was
provided by the Army Research Office Institute of Collaborative Bio-
technologies.

References

1. Honig B, Nicholls A (1995) Science 268:1144–1149
2. Gilson MK (1995) Curr Opin Struct Biol 5:216–223
3. Sitkoff D, Sharp KA, Honig B (1994) J Phys Chem 98:1978–1988
4. Sitkoff D, Ben-Tal N, Honig B (1996) J Phys Chem 100:2744–

2752
5. Prabhu NV, Zhu P, Sharp KA (2004) J Comput Chem 25:2049–

2064
6. Wagoner J, Baker NA (2004) J Comput Chem 25:1623–1629
7. Zacharias M, Luty BA, Davis ME, McCammon JA (1994) J Mol

Biol 238:455–465
8. Misra VK, Sharp KA, Friedman RA, Honig B (1994) J Mol Biol

238:245–263
9. David L, Luo R, Gilson MK (2000) J Comput Chem 21:295–309

10. Feig M, Onufriev A, Lee MS, Im W, Case DA, Brooks
CLIII (2004) J Comput Chem 25:265–284

11. Gohlke H, Case DA (2004) J Comput Chem 25:238–250
12. Davis ME, McCammon JA (1989) J Comput Chem 10:386–391
13. Nicholls A, Honig B (1991) J Comput Chem 12:435–445
14. Rocchia W, Sridharan S, Nicholls A, Alexov E, Chiabrera A,

Honig B (2002) J Comput Chem 23:128–137
15. Luo R, David L, Gilson MK (2002) J Comput Chem 23:1244–

1253
16. Fogolari F, Brigo A, Molinari H (2003) Biophys J 85:159–166
17. Kollman PA, Massova I, Reyes C, Kuhn B, Huo S, Chong L, Lee M,

Lee T, Duan Y, Wang W et al (2000) Acc Chem Res 33:889–897
18. Bruccoleri RE (1993) J Comput Chem 14:1417–1422
19. Bruccoleri RE, Novotny JR, Davis ME, Sharp KA (1997) J Com-

put Chem 18:268–276
20. Grant JA, Pickup BT, Nicholls A (2001) J Comput Chem 22:608–

640
21. Davis ME, McCammon JA (1991) J Comput Chem 12:909–912
22. Im W, Beglov D, Roux B (1998) Comput Phys Commun 111:59–

75
23. Grant JA, Pickup BT (1995) J Phys Chem 99:3503–3510
24. Swanson JMJ, Adcock SA, McCammon JA (2005) J Chem Theory

Comput 1:484–493
25. Swanson JMJ, Wagoner JA, Baker NA, McCammon JA (2007)

J Chem Theory Comput 3:170–183
26. Brandstetter H, Turk D, Hoeffken HW, Grosse D, Sturzebecher J,

Martin PD, Edwards BFP, Bode W (1992) J Mol Biol 226:1085–
1099

27. Jorgensen WL, Tirado-Rives J (1988) J Am Chem Soc 110:1657–
1666

28. Brooks CL III, Case DA (1993) Chem Rev 93:2487–2502

123


	Harmonic averaging of smooth permittivity functionsin finite-difference Poisson--Boltzmann Electrostatics
	Abstract
	Introduction
	Methods
	Results and discussion
	Conclusions
	Acknowledgements
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <>
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002d00730062006d002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


